
D-AISS 697 TIMING VRRIATION IN DUAL LOOP DENCNNARKS(U) 1
CRAIEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST N ALTMAN ET AL. OCT 87 CMU/SEI-87-TR-21

UCLSSIFIED ES-TR-87-172 F9628-85-C-666F/ 12/5 L

MonsonhhEE

El'..

U'

Ugh II1 It . i

I.' I
UIL.25 Ql . fI

A

MICROCOPY RESOLUTION TEST CHART
B _,_IONALBUREAU OF STANDARDS-1963-A

%

% %

ESD-TR-87-1 72
.. Carnegie-MelIon Universtly

Software Engineering Institute __________

00

Timing Variation in Dual Loop
Benchmarks

Neal Altman
Nelson Welcferman

October 1987

/ DTIC

**1

D
TE

Approved i~uj~ ee Au
D~st~hxP 0 u lit iress

871*4 81

Technical Report
CMU/SEI-87-TR-21

ESD-TR-87-172
October 1987

* Timing Variation in Dual Loop
Benchmarks

Neal Altman
Member of the Technical Staff

Ada Embedded Systems Testbed Project

Nelson Weiderman
Project Leader

Ada Embedded Systems Testbed Project

0b

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD

position. It is published in the interest of scientific and technical information

exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1987 by the Software Engineering Institute.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD conractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161.
Ada is a registered trademark of the U.S Government, Ada Joint Program Office. DEC, MicroVAX, ULTRIX. VAX,
VAX ELN. and VMS are trademarks of Digital Equipment Corporation. SD-Ada is a registered trademark of Systems
Designers pic. VADS is a registered tiademark and Verdix is a trademark of Verdix Corp. TeleGen2 is a trademark of
TeleSoft.

Table of Contents
1. Dual Loop Benchmarks: Purpose and Assumptions 1

2. Testing the Validity of the Dual Loop Design for Timing Benchmarks 3

3. Conclusion 7

References 9

Appendix A. Specific Configurations Tested 11
A.a. MicroVAXNAXELN 11
A.b. MC68020/SD-Ada 11

Appendix B. Raw Data 13
B.a. CAL2 for the MicroVAX/VAXELN 13
B.b. CAL2 for the MC68020/SD-Ada 14

Appendix C. Test Programs 17
C.a. CAL2 Source Code for the MicroVAX/VAXELN 17
C.b. CAL2 Source Code for the MC68020/SD-Ada 20

* '....Accesion For

NTIS CRAMI
OTIC TAB []
Urannoi,'ced []

By

•A'v;i; d.: ;? or

CMU/SEI-87-TR-21

: V . *•

a
S

-S

A'
S

S

S

S

'S

'A

p

S

CMU(SEI-57-TR-21

.5

'I -F .~

List of Tables
Table 2-1: CAL2 Test Results from VAXELN Ada (time in seconds) 4

Table 2-2: CAL2 Test Results from SD ADA-Plus on the 68020 (time in 5
seconds)

" I

CMU/SEI-87-TR-21 IIII

Rt0aVTW

* Timing Variation in Dual Loop Benchmarks

Abstract
Benchmarks that measure time values using a standard system clock often employ a
dual loop design. One of the important assumptions of this design is that textually
identical loop statements will take the same amount ottime to execute. This as-
sumption was tested on two bare computers with Ada--et programs and has beenL
demonstrated to be inaccurate in these specific test cases. J'

* 1. Dual Loop Benchmarks: Purpose and Assumptions
Benchmarks are tests designed to measure the capabilities of a computer system. They are
used to compare different computer systems and determine the suitability of a computer system
for particular tasks. Benchmarks show a wide variation in what they are intended to measure,

(how they are designed, and how they are implemented. Many benchmarks produce outputs that
are measurements of the time required to perform some task. A common technique is to write a
program that performs some interesting bit of work (e.g., a rendezvous) sandwiched between
calls to a system timer.

Benchmarks that use time as a unit of measure vary widely in the time they require to run. Some
tasks are brief and can take fractional parts of a second to execute. Others measure durations of
minutes or hours. The ability of computer clocks to measure this range of times also varies
widely. A system clock available to a benchmark designer may be accurate only to a tenth of a
second, far too slow to measure an event in the millisecond or microsecond range. More ac-
curate timing devices are often available, but as an option rather than as a standard component.
For benchmarks intended for general use, a dual loop benchmark design is often used to permit
the benchmark to execute on an unmodified system.

Dual loop benchmarks handle the problem of imprecise clocks by extending the duration of the
test to a length that the clock can readily measure. The time required for a test is extended by
repeating the test numerous times between calls to the system timer. Repetition is usually pro-
grammed by inserting the test in a loop, where the number of repetitions may be conveniently
changed. The increased time duration of the test series can be measured easily, and the time for
the individual test can be determined by computing the average value for the test series. Intro-
ducing a loop construct into the test adds time, which must be factored out. This is done with a
second loop, a control loop, which contains only the loop construct and not the actual test. The
time required for the benchmark is assumed to be the value obtained by subtracting the control
loop time from the test loop time. An Ada skeleton for a dual loop benchmark appears as
follows:1

'This Ada program fragment requires that the constant SOME-VYALUE and a procedure TEST be added before the
program can actually be run, In actual practice, precautions must be taken to ensure optimization by the compiler does
not after the essential program structure. For example, because the empty loop contains no executable statements, it
might be removed by a compiler.

CMU/SEI-87-TR-21 I

vith CALENDAR; use CALENDAR;

procedure DUALL1.001EXAMPLE is

NtU3MEl01_TESTS : constant INTEGER : SOME VALUE;
START TEST : CALEDJAR. TInME;
STOP TEST : CA.LENDAR. TINE;
STA T CONTROL : CALENDAR. TIME;
STOP CTROL : CALENDAR. TIBM;
AVERAGTINE : DURATION;

begin

-- Test loop
STARTTEST : - CALENDAR. CLOCK;
for InMEXl in l..NUMBZROF_TESTS loop

TEST; -- Test.
end loop;
STOP TEST :- CALENDAR.CLOCK;

-- Control loop
STARTCONTROL : - CALENDAR. CLOCK;
for INDEXl in I..NUMBER_O1_TESTS loop

null; -- No Test.
end loop;
STOP-CONTROL - CALENDAR. CLOCK;

AVERAGETIMN : ((STOP_TEST - START TEST) -
(STOPCONTROL - START CONTROL))
/ UMBER o TESTS;

end DU LLOOP-_ZXAWLZ;
A critical assumption made by the dual loop benchmarking scheme is that textually equivalent
code constructs require the same amount of time to execute. In other words, time required by the
loop constructs and control loops are substantially identical.

2 CMU/SEI-87-TR-21

" ' . ,'. " ', " ,, % " " ", " ,"W ' " " " " " " "P '% -" ",, "" " ' - " " ,.f •

2. Testing the Validity of the Dual Loop Design for
Timing Benchmarks

The assumption that textually equivalent loops require similar amounts of time was subjected to
test with Ada compilers for two bare machines: a DEC MicroVAX II computer using VAXELNTM

Ada Ver. 1.1, and a Motorola 68020 single board computer using Systems Designers' SD
Ada-PlusNm Ver. 2B.01. Times were obtained using the routines in package CALENDAR. For
DEC Ada, SYSTEM.TICK was 0.01 seconds. For SD Ada-Plus, SYSTEM.TICK was approxi-
mately 0.0078 seconds (actually 2-7 seconds).

The test program, CAL2, used the format of the Ada dual loop skeleton, but it increased the
number of loops to five. Each loop was inserted into a procedure. The source code for each loop
was made as similar as possible. Only the names of the procedures containing the test loops
were allowed to differ between loops. By calling the procedures in different sequences, the order
of loop execution was varied (e.g., first order, 1-2-3-4-5; next order, 5-4-3-2-1; then, 2-5-1-3-4).
This variation tested the hypothesis that the execution time for a loop may be affected by the run
sequence. Rather than using completely empty loops, a call to a single subroutine was placed in
each loop, and appropriate checks were made to ensure that the subroutine call was not op-
timized out of the loop by the Ada compiler during program translation. The light loading factor
was imposed arbitrarily, but it matched the test loop of a benchmark measuring subroutine call
overhead. Output of test results was initiated only after testing was complete. There were two
versions of CAL2, one for VAXELN and one for the 68020, reflecting the differences in the I/O
packages available under the two compilers. The VAXELN version is included as Appendix C.a
(page 17), and the 68020 version as Appendix C.b (page 20). Note that the 68020 version uses
the package TARGET_10 rather than TEXT_10.

4* The assembly language translations produced by each compiler were examined. The code for
the loops proved to be identical except for names of variables, procedures, and labels.

The programs were run three times on each target and showed a consistent pattern. Times for
individual loops were consistent, while times between loops showed noticeable variation (Tables
2-1 and 2-2). The timings were sensitive to the number of loop iterations, the exact format of the
loop, the location of program code in memory, and other factors.2 The examples included here
show a maximum difference between loops of about 12%. The raw output is included in Appen-
dix B.

CAL2 showed a consistent pattern of variation on each of the tested systems. The
MicroVAXIVAXELN Ada combination showed one "slow loop" and four "fast loops" with similar
times. The 68020/SD-Ada combination showed two "slow loops" and three "fast loops." Again,
the two categories of loops shared similar times. The order of execution of the individual loops
had no effect on the times.

2Compliete information is provided in [1J.

CMU/SEI-87-TR-21 3

A _P - Sr*. .V . .jm',.- ,'- ' ' ,=" ,Y , o % " I ," A • - , .

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Variation
Trial A Mode 4.38 4.38 4.91 4.38 4.38 .53(12.1%/)

Mean 4.38 4.38 4.91 4.38 4.38 .53(12.1%)
Range .01 .02 .01 .01 .01

(20 samples, 100,000 iterations/loop)

Trial B Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Variation
Mode 4.37 4.37 4.91 4.37 4.37 .54(12.4%/)
Mean 4.37 4.37 4.91 4.37 4.37 .54(12.4%/)

Range .02 .01 .01 .01 .01
(20 samples, 100,000 iterations/loop)

Trial C Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Variation
Made 4.37 4.37 4.91 4.37 4.37 .54(12.4%Y)
Mean 4.37 4.37 4.91 4.37 4.37 .54(12.4%/)

Range .02 .01 .00 .01 .01
(20 samples, 100,000 iterations/loop)

Table 2-1: CAL2 Test Results from VAXELN Ada (time in seconds)

The cause of the variation in times was analyzed. For the MicroVAX, testing established that the
loop position in memory was the critical factor. The virtual memory space of the MicroVAX is
divided into 512-byte pages, which correspond to identically sized physical pages. The slow loop
happened to span a page boundary and consequently ran more slowly due to the overhead
inherent in shifting between pages; the loop changed as the program size changed. A suggestion
that the variation was caused by the byte alignment of indivdual loops with respect to the four-
byte MicroVAX word was considered, but the byte alignment of the loops was identical (compared
to the start of word boundaries).

The 68020 processor accessed memory by word (four bytes), while the SD-Ada compiler placed
the loop statement without regard to word boundaries. As a consequence, certain loops were
aligned more advantageously and required fewer memory accesses to execute.

00

4 CMU/SEI-87-TR-21

04

'- A-6 %A .~

Loop I Loop 2 Loop 3 Loop 4 Loop 5 Variation
Trial A Mode 2.055 2258 2.055 2.312 2.055 256(12.5%)

Mean 2.054 2.259 2.055 2.310 2.054 256(12.5%)
Range .008 .008 .008 .007 .008

(20 samples, 100,000 iterations/loop)

Loop I Loop 2 Loop 3 Loop 4 Loop 5 Variation
Trial B Mode 2.055 2.250 2.055 2.312 2.055 257(12.5%)

Mean 2.055 2.250 2.055 2.310 2.055 255(12.4%)
Range .008 .008 .008 .007 .000

(20 samples, 100,000 iterations/loop)

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Variation
Trial C3 Mode 2.086 2.062 2.133 2.055 2.180 .125 (6.1%)

Mean 2.084 2.066 2.133 2.055 2.181 .126 (6.1%)
Range .008 .031 .000 .000 .008

(20 samples, 100,000 iterationsiloop)

Table 2-2: CAL2 Test Results from SD ADA-Plus on the 68020 (time in seconds)

3Minor changes to the source code forced the recompilation of CAL2 for Trial C. Note the difference in times when Trial
C is compared to Trials A and B. The source code for Trial C is included in Appendix C.

CMU/SEI-87-TR-21 5

A.

6 CMU/SEI-87-TR-21

3. Conclusion
It is not clear that the variation observed in these examples will be seen on all systems or that
some variation in loop timings is sufficient to completely invalidate the technique. However,
practitioners who simply prepare and run dual loop benchmarks without validation may garner
results that are not accurate. This source of variation appears to be dependent on the specific
hardware/software combination under test; thus, the amount of variation will vary depending upon
the hardware, the system software, the format of the benchmark, and the specific load points
selected by the interaction of these components. As a consequence, the accuracy of a dual loop
benchmark depends upon a highly specific set of circumstances and cannot be controlled by a
general technique when the benchmark is written.

Dual loop benchmarking is based on the assumption that the time taken to execute two textually
identical loops will be substantially identical. Simple tests have demonstrated that textually iden-
tical loops exhibit substantial variation in execution time on specific test systems. The conse-
quence of this variation is that benchmark programs using the dual loop paradigm to measure the
execution time of a particular Ada feature (such as a subroutine call) can and do produce nega-
tive values. The positive values produced by such test suites can be erroneously accepted as
accurate despite unbounded relative errors.

CMU/SEI-87-TR-21 7

,.. %.%,.., ,,;, .;.,",.;.,,,., ..- ., ,,,,, .'%'%.%.'.'..-%-%. ,,..,,.., .. -.. %.,,L,,.,'=' ,' ,.%" " ',.'..',.;,
t.-, - .qr , , ' . .' ' ' • =, ". rv ,, ,.r . , . , , q ., - J -', r= , ,;" " " ," lq: - " '=, ,', , v

'=

.ww.wSaa.JUrUrw 'r rig r~J~narmur u~rwu marrj rtj rJ - KUr *int! an N 9 anal I 'VI rt I 'V '4W WV try VUflSVA '1" Sr I A 4 V WV WV 11W tFU WV

p

S

S

S

S

9

* .5

'S

'S

a CMU/SEI-87-TR-21

v ~ v. t;~*.r~' ~ - JS~es/ v..S,.-,/./;:; ., v Q-./ty..y ;t~ c 'z.*:. tV - ': CI P

* References
[11 Altman, Neal.

Factors Causing Unexpected Variation in Ada Bechmarks.
Technical Report CMU/SEI-87-TR-22, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA 15213, October, 1987.

II

CMU/SEI147-TR-21 9

AA

10 CMU/SEI147-TR-21

Appendix A: Specific Configurations Tested

A.a. MicroVAX/VAXELN

System Type: MicroVAX II (two identical configurations, SEIYB and SEIYC)
Manufacturer: Digital Equipment Corporation
Processor: KA-630
Peripherals: Console terminal, KWVI 1 real-time clock; DRV1 I J parallel interface

Ada Compiler: DEC VAXTM Ada Ver. 1.3-23 (under MicroVMS TM Ver. 4.5); VAXELN Adz
Ver. 1.1 (under MicroVMS Ver. 4.5)

Run Time: VAXELN, Ver. 2.3; VAXELN Ada, Ver. 1.1
Vendor: Digital Equipment Corporation

A.b. MC68020/SD-Ada

System Type: MVMEI133 single board processor in Motorola VME bus enclosure
Manufacturer: Motorola Microsystems
Processor: MC68020, 12.5 Mhz.
Peripherals: Console terminal, two RS232 host connections

Ada Compiler: SD Ada-Plus VMS TM x 68020, Release 2B.01 (under MicroVMS Ver. 4.5)
Run Time: SD-Ada VMX9 x 68020, Release 2B.01
Vendor: Systems Designers plc.

•CMU/SEI-87-TR-21 11

12 CMU/SEI-87-TR-21

Appendix B: Raw Data

B.a. CAL2 for the MicroVAXNAXELN
CAL--ultiple executions of identical loops--tim in seconds:

Run on 811TB on 4/6/87. Build paramters were:
characteristic /nofile /nosezver /debugmnone
program CL2 /kernel stakm40 /user stacka40 /job .prioritys0 -

/proaesspriority-O /arguent-("CONSOLE: " ,

-25"1 M XXX3C3 "-: :S: CH1.RE1SON.T .CAL2 ICAL2 VAXEL .LOG", "CONSOLE:")
device XIQ /r.ister-%O774440 /vector--0120 /priority-4

Test # LOOP 1 LOOP 2 LOOP 3 LOOP 4 LOOP5 Calling Order
1 4.38 4.39 4.91 4.38 4.38 1-2-3-4-5
2 4.38 4.37 4.91 4.38 4.38 5-4-3-2-1
3 4.37 4.38 4.91 4.38 4.38 2-5-1-3-4
4 4.37 4.38 4.91 4.38 4.38 4-1-5-2-3
5 4.37 4.38 4.91 4.38 4.37 1-2-3-4-5
6 4.37 4.38 4.91 4.38 4.38 5-4-3-2-1

7 4.38 4.38 4.91 4.37 4.38 2-5-1-3-4
8 4.38 4.38 4.91 4.38 4.38 4-1-5-2-3

9 4.37 4.38 4.91 4.38 4.38 1-2-3-4-5
10 4.38 4.38 4.91 4.37 4.38 5-4-3-2-1
11 4.38 4.38 4.91 4.38 4.37 2-5-1-3-4
12 4.37 4.38 4.91 4.38 4.38 4-1-5-2-3
13 4.38 4.37 4.91 4.38 4.38 1-2-3-4-5
14 4.38 4.38 4.91 4.37 4.38 5-4-3-2-1
15 4.38 4.38 4.91 4.38 4.37 2-5-1-3-4
16 4.38 4.38 4.91 4.37 4.38 4-1-5-2-3
17 4.37 4.38 4.91 4.38 4.37 1-2-3-4-5
18 4.38 4.38 4.91 4.38 4.38 5-4-3-2-1
19 4.38 4.37 4.91 4.38 4.38 2-5-1-3-4
20 4.38 4.37 4.90 4.38 4.38 4-1-5-2-3

CAL2--Multiple executions of identical loops--time in seconds:

Run on SKZYC on 5/29/87. Build parameters were:
characteristic /nofile /noserver /dbuqmnone
program CAL2 /kernel stack-40 /user stack-40 /Job priority-0 -

/processpriority-0 /argument-("CONSOLZ: -, -

"25""k XXXXX "-: :PS: (&.RZASON T.CAL2]CAL2_VAXI3I.LOG", "CONSOLE:")
device XQA /r&eistermO774440 /vector-t0120 /priority-4

Test # LOOP 1 LOOP 2 LOOP 3 LOOP4 LOOP5 Calling Order

S 4.9 4.38 4.32 4.38 4.38 1-2-3-4-5
2 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
3 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
4 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3

5 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
6 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1

7 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
8 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
9 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5

10 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
11 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4

12 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
13 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
14 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
1 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4

CMU/SEI-87-TR-21 13

%,

15N."Armnvr. 4.37 .37W..7 3

16 4.37 4.37 4.91 4.37 4.37 4-1-S-2-3
17 4.37 4.37 4.91 4.37 4.37 1-2-3-4-S
is 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1

19 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
20 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3

CA2--0-tiple executions of identical loops--time in seconds:

Run on SUTYC on 5/29/87. Build paramters were:
characteristic /nofile /noserver /debug-mone
program CAT,2 /kernel stack-40 /user staok-40 /Jobjpriority -

/prooesaspriority-0 /argument- ("COUSO:, -
"25""I

M
XXXXCXX"": :PS: (NA.PASOW Tr.C&L2]CRL2 VRJIj.LOG, COSOZI:")

device XQ& /rogiste-40774440 /vector- 0120 /priority-4

Test # LOOP_1 LOOP 2 LOOP 3 LOOP 4 LOOP5 Calling Order
1 4.9 4.38 4.91 4.38 4.38 1-2-3-4-S
2 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
3 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4

4 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
5 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
6 4. i 4.37 4.91 4.37 4.37 5-4-3-2-1
7 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
8 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
9 4.37 4.37 4.91 4.37 4.37 1-2-3-4-3

10 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
11 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
12 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3
13 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
14 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
15 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
16 4.37 4.31 4.91 4.31 4.37 4-1-5-2-3
17 4.37 4.37 4.91 4.37 4.37 1-2-3-4-5
18 4.37 4.37 4.91 4.37 4.37 5-4-3-2-1
19 4.37 4.37 4.91 4.37 4.37 2-5-1-3-4
20 4.37 4.37 4.91 4.37 4.37 4-1-5-2-3

B.b. CAL2 for the MC68020/SD-Ada
Date: Friday, 24 April 1987 10:43:30 38T
From: John. Slusarzsei. ia.edu
To: nasei. .edu

N** ote: Leading zeros added to fractional portion& of times which

required them. This is a fix of the output problem with the
original version of CR1.2_SD. MIA 5/28/87 ***

CK2 SD--Kultiple executions of identical loops--tim in seconds:
Test 0 LOOP 1 LOOP 2 LOOP 3 LOOP 4 LOOP Calling Order

1 2.055 2.258 2.055 2.312 2.055 1-2-3-4-5
2 2.055 2.258 2.055 2.312 2.055 5-4-3-2-1
3 2.055 2.258 2.055 2.312 2.055 2-5-1-3-4
4 2.055 2.258 2.055 2.312 2.055 4-1-5-2-3
5 2.055 2.258 2.055 2.312 2.055 1-2-3-4-5
6 2.035 2.258 2.055 2.312 2.055 5-4-3-2-1
7 2.055 2.258 2.055 2.312 2.055 2-5-1-3-4

8 2.055 2.258 2.055 2.312 2.055 4-1-5-2-3
9 2.055 2.258 2.055 2.312 2.055 1-2-3-4-5

10 2.055 2.258 2.055 2.312 2.055 5-4-3-2-1
11 2.053 2.258 2.055 2.312 2.055 2-5-1-3-4

12 2.047 2.258 2.055 2.305 2.047 4-1-5-2-3

13 2.055 2.258 2.055 2.312 2.055 1-2-3-4-S

14 CMU/SEI-87-TR-21

14 2.055 2.266 2.055 2.305 2.055 5-4-3-2-1
15 2.055 2.258 2.055 2.312 2.055 2-5-1-3-4
16 2.055 2.258 2.047 2.305 2.055 4-1-5-2-3

17 2.047 2.258 2.055 2.305 2.047 1-2-3-4-5
18 2.055 2.258 2.055 2.305 2.047 5-4-3-2-1
19 2.055 2.266 2.055 2.305 2.055 2-5-1-3-4
20 2.055 2.258 2.055 2.312 2.055 4-1-5-2-3

Another run

CAL2 SD--Nultiple executions of identical loops--time in seconds:

Test 0 LOOP 1 LOOP 2 LOOP 3 LOOP 4 LOOP 5 Calling Order
1 2.055 2.210 2.055 2.312 2.055 1-2-3-4-5
2 2.055 2.250 2.055 2.312 2.055 5-4-3-2-1

3 2.055 2.250 2.055 2.312 2.055 2-5-1-3-4
4 2.055 2.250 2.055 2.312 2.055 4-1-5-2-3
5 2.055 2.250 2.055 2.312 2.055 1-2-3-4-5
6 2.047 2.250 2.055 2.305 2.055 5-4-3-2-1
7 2.055 2.250 2.055 2.305 2.055 2-5-1-3-4
8 2.055 2.250 2.055 2.312 2.055 4-1-5-2-3
9 2.055 2.250 2.055 2.312 2.055 1-2-3-4-5

10 2.055 2.250 2.055 2.312 2.055 5-4-3-2-1

11 2.055 2.250 2.055 2.312 2.055 2-5-1-3-4
12 2.055 2.250 2.055 2.312 2.055 4-1-5-2-3
13 2.055 2.250 2.055 2.312 2.055 1-2-3-4-5
14 2.055 2.250 2.047 2.305 2.055 5-4-3-2-1

15 2.055 2.250 2.055 2.312 2.055 2-5-1-3-4
16 2.055 2.250 2.055 2.305 2.055 4-1-5-2-3
17 2.055 2.258 2.055 2.305 2.055 1-2-3-4-5
18 2.055 2.250 2.055 2.312 2.055 5-4-3-2-1
19 2.055 2.250 2.055 2.312 2.055 2-5-1-3-4

20 2.055 2.250 2.055 2.312 2.055 4-1-5-2-3

Date: Thursday, 28 May 1987 13:28:54 EDT
from: Jobn. Slusarzsei. cin.edu
To: nalsei.cma.edu

CAL2.SD--Mltiple executions of identical loops--tim. in seconds:
Test 0 LOOP 1 LOOP 2 LOOP 3 LOOP 4 LOOP S Calling Order

1 2.086 2.055 2.13 2.015 2.180 1-2-3-4-5
2 2.070 2.062 2.133 2.055 2.188 5-4-3-2-1
3 2.078 2.006 2.133 2.055 2.188 2-5-1-3-4

4 2.086 2.062 2.133 2.035 2.180 4-1-5-2-3
5 2.086 2.062 2.133 2.055 2.180 1-2-3-4-5
6 2.086 2.062 2.133 2.055 2.180 5-4-3-2-1

7 2.086 2.086 2.133 2.055 2.180 2-5-1-3-4
8 2.086 2.078 2.133 2.055 2.180 4-1-5-2-3
9 2.078 2.070 2.133 2.055 2.180 1-2-3-4-5

10 2.086 2.086 2.133 2.055 2.180 5-4-3-2-1
11 2.086 2.055 2.133 2.055 2.180 2-5-1-3-4
12 2.086 2.062 2.133 2.055 2.180 4-1-5-2-3
13 2.086 2.055 2.133 2.055 2.180 1-2-3-4-5
14 2.078 2.062 2.133 2.055 2.180 5-4-3-2-1
15 2.078 2.055 2.133 2.055 2.188 2-5-1-3-4

16 2.086 2.062 2.133 2.055 2.180 4-1-5-2-3
17 2.078 2.086 2.133 2.055 2.180 1-2-3-4-S
18 2.086 2.055 2.133 2.055 2.180 5-4-3-2-1
19 2.086 2.062 2.133 2.055 2.180 2-5-1-3-4
20 2.086 2.055 2.133 2.055 2.180 4-1-5-2-3

loop alignment data

loop I line 77 : 182

CMU/SEI-87-TR-21 15

loop 2 line 94 1004
loop 3 line I11 1186
loop 4 line 126 1308
loop 5 line 145 148A

Loops 2 and 4 have starting alignmnt. on 32 bit boundary
Loops 1,3,5 have starting aligniment not on 32 bit

16 CMU/SEI-87-TR.21

Appendix C: Test Programs

C.a. CAL2 Source Code for the MicroVAX/VAXELN

-- M1 is a benchmark calibration routine intended to test the assumption
-- that textually identical loops will take (approximately) the same amount
-- of tim to execute.

-- The routine was devised to verify that benchmarks which depend on a
-- dual test and control loop structure will execute correctly on the
-- target system.

-Test format is to call five functions (LOOP 1..LOOP 5) executed in

-- succession. Each function returns a DURATION value, obtained using
-- the Ada CALZNDER.CLOCX routine. The tim is obtained by subtracting
-- the tim as the routine is entered from the time just
-- prior to the return to caller. Between the two calls, a tight loop is
-- executed LOOP REPETITIONS tims. The loop contains a single call to
-- procedure PROC. PROC simply serves to place a light load in each of
-- the timing loops.

-- The test calls are made in a number of arbitrary orders to allow
-- detection of any effects relating to the total number of machine

-- cycles, as opposed to the ordering of the LOOP routines.

-- The test sequence is executed TEST -RPETITIONS time to allow for system
-- intialization effects (and possibly interruptions during execution).

-- Results are output at the conclusion of all tests.

-- Programing notes:
-- o The package TROUTINE contains a amall routine PROC, which simply
-- assigns a fixed value to the single integer argument, ARG. It is
-- isolated in a package to prevent its being optimized to an inline
-- assignment.

-- Known bugs:

- - <none>

-- Who Date Remarks

-- MA 16 June 87 Corrected coinnts.
-- M 4 April 87 Adapted from bencharking test routine TEST 9.

package TROUTINE is
procedure PROC(ARG: in out INTEGER);

and T-ROUTINE;

with T ROUTINE; use T ROUTINE;
with CALENDAR; use CALENDAR;

with TEXT_10; use TiXT 10;

procedure CAL2 is

package TINS 10 is new FIXED 1O(DURATION); use TIME 10;
package INTJO is new INTEGER IS(INTEGER); use INT_10;

LOOP REPETITIONS: constant INTEGER :m 100000;

TEST REPETITIONS: constant INTEGER : 5:
SEQUENCECOUNT: constant INTEGER : - 4;
LOOP COUNT: constant INTE :R 5;

CMU/SEI-87-TR-21 17

~P

LOOP TINES: array (1.. TEST REPETITIONS, 1.. SEQUZNCZCOUNT,
1. .1.001COUNT) of DURATION;

SEQUENCELLENGTH: constant INTEGER :-(LOP COUNT * 2) - 1;
CALLING _SEQUENCE: array (1.. TEST REPETITIONS, 1. .SEQUENCECOUNT) of

STRING (1.. SEQUENCELENGTH);

function LOOP 1 return DURATION is

START TINE: TIME;
END IbM: TINE;
3A VALUE: INTEGER :- 12;

START TINE CLOCK;
for INDEX In 1.. .1.00 REPETITIONS loop

PROC (A, VALUE);
end loop;

END TINE :- CLOCK;

return END TINE - START-TINE;I

function 1.0012 return DURATION is

START TIME: TIM;

END TINE: TIME;I
beiA VALUE: INTEE :- 12:

START TM3 :- CLOCK;
for INDEX In 1.. LOOP REPETITIONS loop

PROC (AVALUE);

end loop;I
retutrn END -TIME - START-TnM;

end LOOP 2;-

function LOO013 return DURATION is

START TINE: TIM;
END IlNE: TIME;

A VALUE: INTEGE :- 12;

begin *
START -TIM CLOCK;
for INDEX in 1-. .1.00REPETITIONS loop

]PROC (A -VALUE)

end loop; _.

END TIM :- CLOCK;
retun END TINE - STARTTINE;

end LOOP 3;

function LOOP-4 return DURATION is -
START TIME: TINE;
ENDTINE: TIME;
A-VALUE: INTEGER :12:

18 CMU/SEI-87-TR-21

begin
*START TINE CLOCK;

for INDEX in 1. .LOOP -REPETITIONS loop
PROC (A VALUE)

end loop;
END MIER CLOCK;
return END TINE - START TINE;

end LOOP 4;

function LOOPS5 return DURATION is

START TINE: TINE;
END TINE: TInM;
A VALEM: INTEGER :- 12;

begin
STRT TINE :- CLOCK;
for 3IEX in 1.. LOOP -RIPETITIONS loop

PROC (A, VALUE);
end loop;
END TIN= CLOCK;
return EN TINE - STIRT TIE

end LOOP_5;

begin
for CURRENTZTST in 1.. TEST EJTITIOVS loop

-- Calling sequence one: :"----"
CALLING- SEQUENCZ (CURRENT-T~,1 -"----"
LOOP TINES (CURRENT-TEST, 1, 1) :m LOOP 1;
LOOP TINES (CURRENT -TEST, 1, 2) wLOOP 2;
LOOP TINES(CURRET TEST. 1, 3) :-LOOP 3;

LO-TIK (CURRENT TST. 1, 4) W~LOP-4;
LOOPTINES (CURREN2T TST, 1, 5) :-LOOP 5;

* -- Calling sequence two:
CALLING SEQUENCE(CURRENT-TEST. 2) :- "5-4-3-2-1";

LOOP -TINE (CURRENT TEST. 2, 5) :LOOP 5;
-00 XS (CURRENT TEST, 2. 4) 1,LOOP4;

LOOP TINES (CURRET7 TEST, 2, 3) : LOP 3;
LOOP TINES (CURRENTi TEST. 2. 2) :-LOOP 2;
LOOP -TIES (CURRET TEST, 2. 1) : LOP 1;

-Calling sequence three:
CALLING -SEQUENCECCURRENT TEST, 3) :- "2-5-1-3-4";
LOOP TINE (CURREN17T TST, 3, 2) :-LOOP 2;
LOOP -TINES(CURRENT TEST, 3, 5) :LOOP 5;

LOOPTINES(URETST, 3, 1) :LOOP 1;I
LOOP TINS (CURRENT7TEST, 3, 3) :-LOP 3;
LOOP TINS(UUTTST, 3. 4) : OOP 4;

-- Calling sequence four:
CALLING SEQUENCE(CURRENT _TEST, 4) :- "4-1-5-2-3";
LOOP -TIES (CURRENT TEST, 4. 4) :-LOOP 4;
LOOP -TINES(CURRENTZTST, 4, 1) :-LOOP 1;

LOOP TINS (CURRENT TEST, 4, 5) ULOOP 5;
LOO TINES(UR~TST, 4, 2) :LOOP 2;
LOOP -TINS(CRRZTEBZT, 4, 3) :LOOP 3;

end loop;

PUT LINE("CAL2--Nultiple execution& of identical loops--tim in seconds:");
NEW INE;
PUT LINE ("Teat # LOOP 1 LOOP_2 LOOP-3 LOOP-4 LOOPS5 Calling Order"):

CMU/SEI-87-TR-21 19

for INDEX 1 in 1..TEST REPETITIONS loop
for NDEX_2 in 1.. SEQUENCE COUNT loop

PUT((((INDEX_1 - 1) * SEQUENCE COUNT) + INDEX_2), 6);
for INDEX 3 in 1..LOOPCOUNT loop

PUT(LOOP. s(INDEX., INEX-2, INDEX_-3), 5, 2);
end loop;
PUT(" ") ;
PU (CALLING_ZSQUENCEz (IDEX, INDEX.2));
NEW LINE;

end loop;
end loop;

end CML2;

package body TROUTINE is

procedure PROC(ARG: in out INTEGER) is

begin
ARG :- 42;

end PROC;

end TROUTINE;

C.b. CAL2 Source Code for the MC68020/SD-Ada

-- CAL2 is a benchmark calibration routine intended to test the assumption
-- that textually identical loops will take (approximately) the same amount
-- of time to execute.

-- CAL2_SD Is a modified version which uses the restricted I/O facilites
-- provided by the SD compiler (Ver. 2B01).

-- The routine was devised to verify that benchmarks which depend on a
-- dual test and control loop structure will execute correctly on the
-- target system.

-- Test format is to call five functions (LOOP 1..LOOP5) executed in
-- succession. Each function returns a DURATION value, obtained using
-- the Ad& CALENDER.CLOCX routine. The time is obtained by subtracting
-- the time as the routine is entered from the time just
-- prior to the return to caller. Between the two calls, a tight loop is
-- executed LOOP REPETITIONS times. The loop contains a single call to
-- procedure PROC. PROC simply serves to place a light load in each of
-the timing loops.

-- The test calls are made in a number of arbitrary orders to allow
-- detection of any effects relating to the total number of machine
-- cycles, as opposed to the ordering of the LOOP routines.

-- The test sequence is executed TESTREPETITIONS times to allow for system
-- intialization effects (and possibly interruptions during execution).

-- Results are output at the conclusion of all tests.

-- Programming notes:
-- o The package TROUTINE contains a small routine PROC, which simply
-- assigns a fixed value to the single integer argument, ARG. It is
-- isolated in a package to prevent its being optimized to an inline
-- assignment.

-- Known bugs:
- - <none>

20 CMU/SEI-87-TR-21

eF

-- Who Date Remarks

-- NWA 16 June 87 Corrected comments.
-- JAS 18 Kay 87 Fixed so that SD 1/O wil function correctly.
-- NA 6 April 87 Modified to work with SD compiler.
-- M 4 April 87 Adapted from bencharkin test routine TEST 9.

package T ROUTINE is
procedure PROC(ARG: in out INTEGER);

end TROUTINE;

with TROUTINE; use TROUTINE;
with CALENDAR; use CALENDAR;
with TARGET_10; use TARGET_10;

procedure CAL2 SD is

LOOP REPETITIONS: constant INTEGER :1 100000;
TEST REPETITIONS: constant INTEGER :- 5;
SEQUiNCE COUNT: constant INTEGER 4;
LOOPCOUNT: constant INTEGER : = 5;

LOOP TIMES: array (i..TESTREPETITIONS, I..SEQUENCECOUNT,
i..LOOPCOUNT) of DURATION;

SEQUENCE LENGTH: constant INTEGER :- (LOOP COUNT * 2) - 1;
CALLING_SEQUENCE: array (1..TESTREPETITIONS, 1..SEQUENCE COUNT) of

STRING (i.. SEQUENCELENGTH);

TENP_FLOAT: FLOAT;
TEST NUMBER: INTEGER;
T VALUE INT PART: INTEGER;
TVALUFRAZPART: INTEGER;

function LOOP 1 return DURATION is

START TINE: TIME;
END TIME: TIME;

A VALUE: INTEGER :- 12;

begin
START TIME :- CLOCK;
for INDEX in 1..LOOPREPETITIONS loop

PROC (A _VALUE);

end loop;
END TIME :- CLOCK;
return END-TIME - STARTTIME;

end LOOP_1;

function LOOP_2 return DURATION is

START TIME: TIME;
END TIME: TIME;
A VALUE: INTEGER :- 12;

begin
START TIME :- CLOCK;
for INDEX in 1..LOOP REPETITIONS loop

PROC (A_VALUE);
end loop;

CMU/SEI-87-TR-21 21

' '~... ~V,.

w)mmrv vn .1 r 'IwwU' ~ . 1'~ vul wi "J R . F wxw, wu~ U2.7 RWWl £w'11 -P - i U V~rj

END TIM :- CLOCK;
return END-TInE - STARTTIME;

end LOOP_2;-

function LOOP 3 return DURATION is

START TIME: TIME;

END TINE: TIME;
Ai

A VALUE: INTEGER :- 12;

begin
START TIME - CLOCK;
for INDEX in 1. .LOOP REPETITIONS loop

PROC (A, VALUE);
end loop;
END TIME :- CLOCK;
return END TInE - START-TIME;

end LOOP 3;

function LOOP 4 return DURATION is

START TIME: TIM;
END TIME: TIME;
A VALUE: INTEGER :- 12;

begin
START TIME :- CLOCK;
for INDEX in 1.. LOOP-REPETITIONS loop

PROC (A_-VALVE);
end loop;
ENDTIME :- CLOCK;
return END TIME - START-TIME;

end LOOP 4;

function LOOP S return DURATION is -

START TIME: TIM;
END TIME: TIM;
A VALUE: INTEGER :- 12;

begin
START TIM :- CLOCK;
for INDEX in 1. .LOOPREPETITIONS loop

PROC (A, VALUE);
end loop;
ENDTINE :- CLOCK;
return ENDTIME - START-TIME;

end LOOP 5;

begin
for CURRENT TEST in 1. .TEST REPETITIONS loop

-- Calling sequence one:
CALLTING SEQUENCE(CURRENT TEST, 1) :- "1-2-3-4-5";
LOOP TIMES(CURRENT TEST, 1, 1) :LOOP 1;
LOOPTIMES (CURRENTTEST, 1, 2) :-LOOP_2;
LOOP TIMES (CURRENT TEST, 1, 3) :-LOOP 3:
LOOP TIMES (CURRENT TEST, 1, 4) :-LOOP 4;
LOOP TIMES (CURRENT TEST. 1, 5) -LOOP 5;

22 CMU/SEI-87-TR-21

-- Calling sequence two:
CAL.LING SEQUENCE (CURRENT TEST, 2) :- "5-4-3-2-1";

LO T[S(CURRENT TEST, 2, 5) :-LOOP_5;
LOPTMS(CURRENT TEST. 2, 4) :-LOOP 4;

LOPTIMES (CURRENT TEST, 2, 3) ULOOP 3;
LOOP -TIMES (CURRENT '-TEST, 2, 2) uLOOP 2;
LOOP TInES(CURRENT TEST, 2, 1) -LOOP 1;

* -- Calling sequence three:
CALLING _SEQUENCE(CURRENT- TEST, 3) :- "2-5-1-3-4";
LOOP TINES(CURRENT TEST, 3, 2) :-LOOP_2;
LOOP TINES(CURRENT TEST, 3, 5) aLOOP 5;

LOiTIMES(CUPRENiTTST, 3, 1) :-LOOP 1;
LOOPTINES(CURRENTTEST, 3, 3) ULOOP 3;
LOPTJSCURN7ZT 3, 4) ULOOP_4;

* -- Calling sequence four:
CALLITNGSEQUENCE(CURRENT TEST, 4) :- 14-1-5-2-3";
LOOP TIMES (CURRENT TE ST, 4, 4) :-LOOP 4;
LOOPTNS (CURTTEST, 4, 1) :=LOOP 1;
Loop TINES (CURRENTTEST, 4, 5) :-LOOP 5;
LOOP -TINES(CURRENiTZTST, 4, 2) -LOOP 2;
LOOP TIMS(URNTTEST, 4, 3) aLOOP 3;

end loop;

OUTSTRING (VDU-PORT,
"r'-1SD--Naltiple executions of identical loops--timm in seconds:");

NEW -LINE (Du PORT);
OmT STRIN(Vu PORT,

"Test # LOOP 1 LOOP 2 LOOP 3 LOOP 4 LOOPS5 Calling Order");
NEWLINE (VDU PORT);
for INDEX 1 in 1. .TEST REPETITIONS loop

for INIDEX 2 in 1. .SEQUENCE COUNT loop
TEST NUNEER : - ((INDEX 1 - 1) * SEQUENCE COUNT) + INDEX 2;
OUT DECIMAL INTEGER (VDV PORT, TEST NUNEE, 6);
for7INDEX 37in 1. .Loop COUNT loop

WFLOAT := FLOAT(LOOPTINES(INDEX_1, INDEX 2, INDEX 3));
T VALUE INT PART : - INTEGER (TEMPeLOiT);
!hiM FLOAT : a FLOAT (LOOPTINES (INDEX 1, INDEX_2, INDEX 3))

* 7 100. 0;
T VALUERMAC PART :=- INTEGER(TE) FLOAT) rem 100:
OUT DECI-MAL INTEGER (VDUPORT, T VALUE INTPART, 2);
OUT sTRxNG(VDU PORT, ...);

OUT DECIKL IZNTEGER (VDU PORT, T-VALUE FRACPART, 2);
end loop;
OUT STRING(VDU PORT,
OUTSTRING (VDU7PORT, CLL-1ING-SEQUENCE (INDEX 1, INDEX 2));
NEW _LINE(VDUPORT);

end loop:
end loop;

end CAL2 -SD;

package body T-ROUTINE is

.6 procedure PROC (ARG: in out INTEGER) is

hAG :- 42;

nd PROC;

end T ROUTINE;

CMU/SEI.87-TR-21 23

F-MW -R-R milrrrr~~rrr

Id

ap

4d

Co

24iUSI8-R2

UNLIMTED- UNWi ArTWTEl r .
SeCUR1ITY CLASSIFICATION OF THIS PAGEAD - ?5 Inq :

REPORT DOCUMENTATION PAGE
i. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

* UNCLASSIFIED NONE

2e. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAI LABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

2b. DECLASSIFICATION/DOWN0GRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4, PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

G& NAME OF PERFORMING ORGANIZATION ~b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

-SOFTWARE NGINEERING INSTITUTE jSEI SEI JOINT PROGRAM OFFICE
6C. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

BAk NAME OF FUNOiNG/SPONSORING 8~b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

SEI JOINT PROGRAM OFFICE jSEI JPO F1962885C0003

C Sc. ADDRESS (City. State anud ZIP Code) 10. SOURCE OF FUNDING NOS. _____________

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK TWORK(UNIT

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO. NO. NO N

PTTTSE!IRCSH. PA 1%211 N/A N/A N/A
11. TITLE (include Security Cwieufication,

TIMING VARIATION TN DUTAL LOO RFNCH?4ARKC ______ ___ _____ ___

12. PERSONAL AUTHORI(S)

0FLATA-Nj.q) JMRA
1s. TYPE OF REPORT 13b. TIME COVERED 4.DATE OF REPORT (Yr. Mo.. Day) 1 PAGE COUNT

FINAL FROM _____TO ___ OCTOBER 1987 17 26
16. SUPPLEMENTARY NOTATION

17. COSATI CODES I. SUBJECT TERMS yContinue on reuerae of necessary and identify by block number)

FIELD GROUP sue. GR. ADA, BENCHMARKS, TEST PROGRAMS, DUAL LOOP BENCHMARKS,

TIMING

19. ASTRACT fContinue on relierse if necessary and identify by block numbers

BENCHMARKS THAT MEASURE TIME VALUES USING A STANDARD SYSTEM CLOCK OFTEN EMPLOY
A DUAL LOOP DESIGN. ONE OF THE IMPORTANT ASSUMPTIONS OF THIS DESIGN IS THT TEXTUALLY
IDENTICAL LOOP STATEMENTS WILL TAKE THE SAME AMOUNT OF TIME TO EXECUTE. THIS ASSUMPTION
HAS BEEN TESTED ON TWO BARE COMPUTERS WITH ADA TEST PROGRAMS AND HAS BEEN DEMONSTRATED
TO BE INACCURATE IN THESE SPECIFIC TEST CASES.

20. OISTRISUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITEO 12 SAME AS RPT OTIC USERS UNCLASSIFIED, UNLIMITED

22s. NAME OF RE6SPONSIBLE INOIVIOUAL 22b TELEPHONE NUMBER 22c OFFICE SYVIBOL

KARL SHINGLER I)

00 FORM 1473,83 APR EDITION OF I1JAN 73 IS OBSOLETE, JNLIMITED. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Jul -XNL~rPFJL7JLL:%Fw--J7ZnXLJ=KJL

muu4mo

